
Windows Local Kernel
Exploitation

X’CON 2004 Beijing

sk@scan-associates.net
Co-founder, Security Consultant, Software Architect
Scan Associates Sdn Bhd

mailto:sk@scan-associates.net

Overview

l Windows Privilege Escalations
l Windows Kernel 101
l Device driver communication problem

l DeviceIOControl
l Finding
l Exploiting

l Kernel shellcode
l Locating base address of device

l Undocumented API (NtQuerySystemInformation)
l Demo

Windows Privilege Escalation

l Exploiting SYSTEM privilege application:
l Buffer overflow in Still Image Service
l IIS IDQ.DLL
l Buffer overflow in POSIX subsystem

l LPC problems
l Named pipe impersonation
l Shatter attack
l Kernel bugs

LPC problems

l Local Procedure Call allows processes to
communicate

l Various problems discovered by Todd Sabin
l NtImpersonateClientOfPort()

l http://www.bindview.com/Support/RAZOR/Advisori
es/2000/adv_NTPromotion.cfm

l http://www.bindview.com/Support/RAZOR/Advisori
es/2000/LPCAdvisory.cfm

l Signedness problem in NTLM Security
Support Provider (NTLMSSP) LPC port
l http://www.bindview.com/Support/RAZOR/Advisori

es/2001/adv_NTLMSSP.cfm

http://www.bindview.com/Support/RAZOR/Advisori
http://www.bindview.com/Support/RAZOR/Advisori
http://www.bindview.com/Support/RAZOR/Advisori

Named Pipe Impersonation

l A server named pipe can impersonate its
client

l Attacker create named pipe before the
server create it

l A privileged client connect to our server
named pipe, we can impersonate the
client to get its privilege

l http://www.blakewatts.com/namedpipepa
per.html

http://www.blakewatts.com/namedpipepa

IDQ.DLL

l IIS always load certain file with specific
filename using SYSTEM privilege

l By creating filename such as:
l IDQ.DLL
l httpext.dll
l httpodbc.dll, etc

l http://www.xfocus.org/exploits/200110/7.
html

http://www.xfocus.org/exploits/200110/7

Shatter Attack

l Send Windows Message to any process
l Basic Shatter:

l Locate a privileged Windows
l Send shellcode to target process space
l Send WM_TIMER message to jump to shellcode in

its own space
l Advance Shatter is still just Shatter
l Require Desktop
l Also known as Local Local attack
l Limited use

Kernel Bugs

l Problems that exist in Kernel land
lWill give us highest access, same level

as the OS
lWindows Kernel is not a well

documented
l Generally more complex than user land
l Probably still plenty of ‘fish’
l Kernel bugs is gaining popular J

Known Kernel Bugs

l Buffer Overrun in Windows Kernel Message
Handling
l http://www.microsoft.com/technet/security/bulletin/

MS03-013.mspx
l Windows VDM TIB

l http://www.eeye.com/html/research/advisories/AD2
0040413E.html

l Windows Expand-Down Data Segment
l http://www.eeye.com/html/research/advisories/AD2

0040413D.html
l Device Driver Communication Problem

l http://sec-labs.hack.pl/papers/win32ddc.php

http://www.microsoft.com/technet/security/bulletin/
http://www.eeye.com/html/research/advisories/AD2
http://www.eeye.com/html/research/advisories/AD2
http://sec-labs.hack.pl/papers/win32ddc.php

Windows Kernel 101

Every kernel modules,
device driver share the
same 2GB memory

Each process has 2GB
memory

Ring 0Ring 3

Memory address from
0x80000000 to
0xFFFFFFFF

Memory address from
0x00000000 to
0x7FFFFFFF

Freedom!Sandbox!

Kernel LandUser Land

…Windows Kernel 101

lWindows kernel land consists of:
l Kernel
l Executives

l Process and Thread manager, I/O Manager, etc
l Win32 User GDI
l Device Driver

l The kernel contains many important
executives object which control the
application in user land

Device Driver

l Loadable Kernel Module (LKM)
l Once in kernel, Device Driver is trusted
l Ability to modify kernel object to change

behavior of application in user land
l Application such as Personal firewall,

Antivirus, etc sometimes install Device
Driver to change behavior of user land:
l Check all socket connections
l Check all file access, etc

Device Driver Communication

l Device driver can accept data from user
land via:
l ReadFile / WriteFile()
l DeviceIoControl()

l Before it can be used, we must open the
driver:
l CreateFile()

lWe can access device driver much like a
file

Data flow

User-mode API
DeviceIoControl(), etc

Internal API (Ntxxx)
NtDeviceIoControlFile(), etc

I/O Manager (Ioxxx)
IopXxxControlFile(), etc

Kernel-mode device driver
DriverDispatcher(), etc

ProbeForWrite,
IoAllocateIrp, etc

Device Driver Skeleton

l Basic device driver
l DriverEntry()
l DriverDispatcher()
l DriverUnload()

l Data from DeviceIoControl() will be
process in DriverDispatcher()

DeviceIoControl()

l Communication between user land and
kernel land

l User program send control code to
device driver via DeviceIoControl() API

l Device driver receive control code and
process

l Device driver return output to user land
via output pointer specified by caller

DeviceIoControl

l BOOL DeviceIoControl(
HANDLE hDevice, // handle to device
DWORD dwIoControlCode, // operation
LPVOID lpInBuffer, // input data buffer
DWORD nInBufferSize, // size of input data

//buffer
LPVOID lpOutBuffer, // output data buffer
DWORD nOutBufferSize, // size of output

//data buffer
LPDWORD lpBytesReturned, // byte count
LPOVERLAPPED lpOverlapped //overlapped

//information
);

lpOutBuffer

l What if output buffer is a memory address in
kernel?

l Will we be able to overwrite any kernel
address?

l What if we point it to overwrite important token?
l What if we overwrite function pointer?
l (Un)Fortunately, I/O Manager provides buffer

handling for device driver

Type of buffer management

l Buffered I/O (Method 0)
l I/O manager allocates enough buffer copy

from/to sender’s data
l Direct I/O (Method 1 and 2)
l Sender’s buffer is lock and I/O manager

pass the pointer of the memory to driver
l Neither I/O (Method 3)
l No buffer management

CTL_CODE

l #define CTL_CODE(DeviceType, Function,
Method, Access) (((DeviceType) << 16) |
((Access) << 14) | ((Function) << 2) | (Method);

MethodFunctionAccessDevice Type

32 bits

2 bits16 bits 2 bits 12 bits

Neither I/O

l Device I/O Control Code that ends with
011b
l 0xXXXXXXX3
l 0xXXXXXXX7
l 0xXXXXXXXB
l 0xXXXXXXXF

l Output pointer can be anywhere,
including kernel land

l Arbitrary memory write

Finding Neither I/O

l Source code and Header file
l Application hooking
l strace –p PID

l Hook system wide *DeviceIoControl*
l From the book, “Undocumented Windows

2000 Secrets”
l C:\w2k_hook *DeviceIoControl*

Find Neither I/O by Source

l Bug found by mslug
(https://www.xfocus.net/bbs/index.php?act=SE&f=16&t
=32580&p=115340&hl=)
l #define BIOCGSTATS 9031 //0x2347

l Other potential targets in Packet.h:
l #define BIOCISDUMPENDED 7411 //0x1CF3
l #define BIOCSRTIMEOUT 7416 //0x1CF8
l #define BIOCSMODE 7412 //0x1CF4
l #define BIOCSWRITEREP 7413 //0x1CF5
l #define BIOCSMINTOCOPY 7414 //0x1CF6
l #define BIOCGEVNAME 7415 //0x1CF7
l #define BIOCSENDPACKETSSYNC 9033 //0x2349
l #define BIOCSETDUMPLIMITS 9034 //0x234A

https://www.xfocus.net/bbs/index.php?act=SE&f=16&t

Find Neither I/O via System Hook

l C:\w2k_hook *DeviceIoControl*
l 1CF:s0=NtDeviceIoControlFile(!2B8.3B4="\??\NAVAP",p,p,p,i

0.4,n222A87,p3CFFEF8,n20,p3CFFEF0,n4)1C4963F2B6F71
D0,530,3

l 18D:s0=NtDeviceIoControlFile(!5C8.344="\Device\Tcp",p330,
p,p,i0.38,n120003,p6F4D8,n24,pB01E90,n8000)1C494FBFF
5C1960,42C,A

l 606:s0=NtDeviceIoControlFile(!E4.898="\Device\Afd\Endpoint
",p1E4,p,p,i0.0,n12047,p1A2F6F0,nD4,p,n0)1C495035A74B1
E0,648,1D

l 1:s0=NtDeviceIoControlFile(!354.120="\??\shadow",p,p,p,i0.0,
n140FFB,p6B2F8,n0,n0)1C495C2244759C0,634,27

l 3201:s0=NtDeviceIoControlFile(!1F0.2D8="\Device\LanmanD
atagramReceiver",p2D0,p,p,i0.50,n130023,pD5FD24,n50,pA4
FF8,n1000)1C4964E8570CB16,584,47

Exploiting DDCV

l Norton A/V Enterprise
l Contains NAVAP.sys device driver
l Allows communication from user program via

DeviceIoControl()
l The following CTL_CODE supported:

l PAGE:0001649D cmp ecx, 222A83h
l PAGE:000164A5 cmp ecx, 222A87h
l PAGE:000164AD cmp ecx, 222A8Bh
l PAGE:000164B5 cmp ecx, 222A8Fh
l PAGE:000164BD cmp ecx, 222A93h
l PAGE:000164C5 cmp ecx, 222A97h
l PAGE:000164CD cmp ecx, 222A9Bh

l Uses Neither I/O heavily (for performance?)

Overwrite Kernel memory

lWith the ability to write to kernel we can:
l Overwrite return address
l Overwrite function pointer
l Overwrite switch jump table
l Overwrite Service Descriptor Table
l etc

l Once overwritten, kernel will jump to us
when it reach that code

Pseudo exploitation

l Determine output value of the vulnerable
DeviceIoControl()

l Allocate memory which Device will jump to
l hMem = VirtualAlloc(myAddress, 0xf000, MEM_COMMIT,

PAGE_EXECUTE_READWRITE);
l Copy the shellcode into allocated memory
l Open the driver

l handler = CreateFile()
l Send first signal to overwrite jump table

l DeviceIoControl(handler, 0xXXXXXXX7, inBuffer, 0x20,
outBuffer, 4, &n, 0))

l Send second signal to jump to shellcode

Overwrite any memory

l Overwrite switch jump table
l Many Device Driver has switch statement to process user request

in DriverDispatcher() that look like this:

NTSTATUS NPF_IoControl(IN PDEVICE_OBJECT DeviceObject,IN PIRP Irp)
{…
switch (FunctionCode){

case BIOCGSTATS: //function to get the capture stats
…
EXIT_SUCCESS(26);
break;

case BIOCGEVNAME:
…
break;

case BIOCSENDPACKETSSYNC:
…

}

Switch jump table

l In Assembly:

PAGE:0002F049 loc_2F049: ; CODE XRE F: sub_2F038+D j
PAGE:0002F049 mov eax, [ebp+arg_0]
PAGE:0002F04C dec eax
PAGE:0002F04D cmp eax, 0Fh ; switch 16 cases
PAGE:0002F050 ja loc_2F3E1 ; default
PAGE:0002F056 jmp ds:off_2F3E8[eax*4] ; switch jump
...
PAGE:0002F3E8 off_2F3E8 dd offset loc_2F05D ; DATA XREF:

 sub_2F038+1E r
PAGE:0002F3E8 dd offset loc_2F08C ; jump table for switch statement
PAGE:0002F3E8 dd offset loc_2F0AF
PAGE:0002F3E8 dd offset loc_2F0B9
PAGE:0002F3E8 dd offset loc_2F0C3
PAGE:0002F3E8 dd offset loc_2F0F4
PAGE:0002F3E8 dd offset loc_2F125
PAGE:0002F3E8 dd offset loc_2F154

Where to Overwrite ?

lWe can overwrite the first switch case at
0x2F3E8 with address of our shellcode

l Then, we call the DeviceIoControl()
again

lWhen it reach the first switch case again,
it will jump to our shellcode

l However, the output from
DeviceIoControl() is always fixed at 0x4

Overwrite

l Address always overwritten with 0x4
l If we overwrite case 0 with 0x4, the next call to it will

jump to 0x00000004
l We cant allocate memory at 0x00000004
l So, we overwrite the first two bytes of the second case

Case 0 Case 1

Overwrite here at 2F3EE

XXXX00000004XXXXXXXXXXXX
2F3E8

… Overwrite

l Now, if we trigger Case 1, it will jump to:
l 0x0004XXXX

lWe can allocate memory 0x00040000
before calling Case 1

Case 0 Case 1

Overwrite here at 2F3EE

XXXX00000004XXXXXXXXXXXX

2F3E8

Jump to shellcode

l Device driver will jump in to
0x0004XXXX after the second signal

lWe need to allocate specific memory
region:
l VirtualAlloc(0x00040000, 0xf000, MEM_COMMIT,

PAGE_EXECUTE_READWRITE);

l Copy our shellcode into the region

Kernel Shellcode (Eyas’ style)

lWhat do we need to execute?
lWritten by Eyas
l http://www.xfocus.net/articles/200306/54

5.html
l Technique:
l Find System’s token
l Replace process’s token pointer with

System’s token

http://www.xfocus.net/articles/200306/54

Find SYSTEM process

l Locate the ETHREAD
l fs:[0x124] or 0xffdff124

l From ETHREAD, we jump to EPROCESS
l Within EPROCESS, use ActiveProcessLinks

to loop into all active process
l For each process, check the UniqueProcessId
l SYSTEM Pid is:

l Win2k = 8
l WinXP = 4

l Can use similar technique to find other PID

Locating SYSTEM process

…

*_EPROCESS

_KAPC_STATE

_KTHREAD
_ETHREAD

FS:0x124

0x00

0x44

…
*Blink…
*Flink

struct _LIST_ENTRY
ActiveProcessLinks

…

…
*Token

*UniqueProcessId

_EPROCESS

Loop between processes

…
*Blink…
*Flink

struct
_LIST_ENTRY
ActiveProcessLinks

…

…
*Token

*UniqueProcessId

_EPROCESS

…
*Blink…
*Flink

struct
_LIST_ENTRY
ActiveProcessLinks

…

…
*Token

*UniqueProcessId

_EPROCESS

…
*Blink…
*Flink

struct
_LIST_ENTRY
ActiveProcessLinks

…

…
*Token

*UniqueProcessId

_EPROCESS

Replace Token Pointer

l Windows’s Security Reference Monitor (SRM)
uses token to identify process or thread

l To become SYSTEM, we just need a SYSTEM
token

l A pointer to SYSTEM token is inside its
EPROCESS

l Once we located SYSTEM process, we
change our process token to point to SYSTEM
token

Getting System Token

…
*Blink…
*Flink

struct
_LIST_ENTRY
ActiveProcessLinks

…

…
*Token

*UniqueProcessId

_EPROCESS

…
*Blink…
*Flink

struct
_LIST_ENTRY
ActiveProcessLinks

…

…
*Token

*UniqueProcessId

_EPROCESS

Guest Tokens

System Tokens

Guest process System process

Base address of Device Driver

l Need to overwrite the exact location of
switch table

l Device driver base memory change
every boot

l Use NtQuerySystemInformation()
l Get SystemModuleInformation list
l Compare Module name to get based

address of any device driver

Getting process name

l Using NtQuerySystemInformation()
again but getting processes list
SystemProcessesAndThreadsInforma
tion

l Compare ProcessName to get
ProcessId

l For each ProcessId, escalate it to
SYSTEM

Proof of Concept

l The complete exploit is available from:
l www.scan-associates.net/papers/navx.c

http://www.scan-associates.net/papers/navx.c

Attack scenario

l Server allows us to
upload *.*

l But every time we
uploaded cmd.asp, it
disappear

l Apparently, Norton
A/V detects cmd.asp
as trojan and delete
it

Encoding script

l Encode cmd.asp using Microsoft Script
Encoder
l http://www.microsoft.com/downloads/details

.aspx?FamilyId=E7877F67-C447-4873-
B1B0-21F0626A6329&displaylang=en

l Upload cmdx.asp to get arbitrary
command execution

l But we only get IUSR user L

http://www.microsoft.com/downloads/details

Privilege escalation

l Upload navx.exe
l Run navx.exe
l Exploit escalate all DLLHOST into

SYSTEM
l Command in cmdx.asp is now running

as SYSTEM

l Thank you XFocus
l Thank you!
l Q & A

